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Abstract-The constitutive behavior of granular assemblies is investigated taking into account
the effect of particle rotation. Continuum fields are assumed by tensorial polynomial expansion for
the discrete variables, namely, particle displacements and rotations. The strain measures for the
packing are obtained from the particle displacement and rotation. From the principle of virtual
work, the stress measures for the packing are expressed in terms of the contact forces. the contact
moments and the geometric measures for the packing structure. The derived stress-strain relationship
is then evaluated by an example of a randomly packed assembly of circular disks loaded in two
different conditions. Deformation of the packing calculated from the constitutive equations is
compared with the results obtained from the discrete method of computer simulation to show the
applicability of the method.

1. INTRODUCTION

Deformation behavior of closely packed granular assemblies in a quasistatic condition is
of interest to many fields, such as soil mechanics, powder mechanics or ceramic mechanics.
In an assembly of granular particles, the deformation occurs mostly at particle contacts.
Thus the system is often treated conceptually as an assembly of rigid particles connected
by springs at contacts such that the system deforms under an applied load through the
deformation of springs.

Mechanical behavior ofsuch system is often analyzed by two approaches which account
for the packing geometry and the local interactions of particles, namely, the discrete
approach and the microstructural continuum approach. The discrete approach solves for
the deformation ofan assembly based on the governing equations for the movement ofeach
particle interacting with its surrounding particles. Along this line of approach, computer
simulation methodology can be found in the work by Serrano and Rodrigus-Ortiz (1973)
and Kishino (1987) for quasi-static condition and in the work by Cundall and Strack (1972)
for dynamic condition. However, this approach is cumbersome for systems composed of
large number of particles. This situation is inevitable in the case of practical problems. For
example, the number of particles is in the order of 106 for a cubic inch of sand. Hence it is
desirable to represent the discrete system with a more tractable continuum model.

In the microstructural continuum method, the deformation behavior of the assembly
is described by the continuum concepts of stress and strain. The constitutive relationship
for a granular assembly is obtained based on the local kinematics and the mechanical
behavior of two particles in contact. A number of studies have been attempted along this
line of approach. For example, work can be found in Duffy (1959), Duffy and Mindlin
(1957), Deresiewicz (1958), and Makhlouf and Stewart (1967) for regular packings, and
Digby (1981), Walton (1987), Jenkins (1987), Chang (1987), and Bathurst and Rothenburg
(1988) for random packings. However, these analyses are limited to the assumption that
there is no gain or loss ofcontacts during deformation. Furthermore, these analyses assume
uniform strain field and do not explicitly consider the rotation mode of particle movement.
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Fig. 1. Local kinematics for two particles.

b
u

In this study, we endeavor to obtain the constitutive relationship for granular systems
considering a non-uniform strain field and taking into account the effect ofparticle rotation.
This involves approximating the discrete variables, viz. displacement and rotation of
particles, by continuum fields using tensor polynomial expansion. To make the analysis
tractable, we assume that the local constitutive law is characterized by elastic springs
connecting two particles, and we neglect the possible gain or loss of contacts during
deformation. However, for analyses of particle assemblies under large deformation, these
assumptions should be removed.

Since, in the microstructural continuum approach, the displacement and rotation are
treated as two independent field variables, the granular material is thus a micro-polar
medium (Toupin, 1964, Eringen, 1968, Kanatani, 1979). In contrast to Kanatani's work
on the fluid-like behavior of granular material, this study is focused on the solid-like
deformation behavior of granular material considering the particle interaction through
contacts under relatively high stress levels in a quasi-static condition.

In this presentation, we first briefly derive the governing equations for the discrete
method following the approach by Serrano and Rodrigus-Ortiz (1973). We then present
the microstructural continuum approach, and deduce the constitutive relations of granular
material, based on the approximation of the discrete variables (viz. displacement and
rotation) by polynomial expansions. The packing structure, represented by position vectors
and fabric tensors, are included in the description of kinematics. Principle of virtual work
is used to express the stress in the media as a function of the packing structure, the contact
forces, and the contact moments.

Using the derived constitutive relationship, an example is shown to analyze the defor
mation of a random packing. The computed deformation from the constitutive equations
is compared with that obtained from discrete method to investigate the applicability of the
microstructrual continuum method.

2. DISCRETE METHOD OF ANALYSIS

2.1. Local kinematics
In a granular assembly, let "a" and "b" denote two convex particles in contact at point

c as shown in Fig. 1. Particles "a" and "b" are conceptually considered to be rigid and
connected at the contact by springs. When the assembly is subjected to an increment of
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load, particles "a" and "b" undergo translations (Le. lit, 11;) and rotations (i.e. wf, wn.
This results in the deformation of the springs connecting the two particles. Two types of
springs are used to represent the contact resistance, namely, the rotation springs and the
stretch springs. The rotation springs transmit the contact moment, and represent the rolling
and torsional resistance at the contact of the two particles. The stretch springs transmit the
contact forces, and represent the compression and sliding resistance at the contact of the
two particles.

The angular rotation, Of, of the rotation springs at the contact of particles "a" and
"b", is caused by the relative rotation of the two particles, that is

Of = w~ - wf. (1)

The deformation, c5f, of the stretch springs at the contact of particles "a" and "b", can
be expressed in terms of the displacements (Le. uf and un, and the rotations (i.e. wf andwn of the two particles, as follows:

(2)

where rf and rtC are the vectors joining the contact point c to the centers of particles "b"
and "a" respectively, and quantity eijl, is the permutation symbols used in tensor
representation for cross product of vectors.

2.2. Local constitutive law at contact
The angular rotation of the rotation springs at the contact point c, OJ, is related to the

contact couple, mf, by a general expression as follows:

mf = GijOJ. (3)

If the springs are characterized as linear elastic, the rotational stiffness tensor takes the
form,

(4)

where G", Gs and G, are the rotational spring constants in the directions of the local
coordinates n, s, and t respectively. The local coordinate system is constructed for each
contact with three orthogonal base unit vectors: the vector n is normal to the contact area,
and the vectors 5 and t can be chosen arbitrarily.

The stretch deformation of the springs at the contact point c, c5J, is related to the
contact force Jr by a general expression,

(5)

For elastic stretch springs, the stiffness tensor is given by

(6)

where k", ks and k, are the spring constants in the directions of local coordinate system n,
s, t respectively.

2.3. Local force and moment equilibrium
Under a quasi-static condition, neglecting the gravitational force, the equilibrium

equations for the particle "a" in the assembly can be expressed in terms of: (I) the force
ff and moment mf externally applied at. the centroid of the particle, and (2) the contact
forces ff and contact couples m'f transmitted from the neighbouring particles. The force
and moment equilibrium equations are as follows:
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f'j+Lf't = 0

mt +L(mt +ejklr't.cf't') = 0

(7)

(8)

where r't.c is the vector joining the centroid of particle "a" to the contact point c. Since the
external forces are applied only to the boundary particles of the assembly, fi and mr are
zero if the particle "a" is within the assembly.

2.4. Governing equations for the system
A set of governing equations for the discrete system can beset up based on the force

equilibrium, local kinematics and local constitutive law. Substituting eqns (2) and (5) into
eqn (7), it follows

(9)

Equation (9) represents three equations that can be established for each particle in the
assembly. Similarly, additional three equations can be established for each particle based
on the moment equilibrium. Using eqns (I), (3) and (8), we obtain

(10)

For a packing with N particles, the total number ofequations is 6N. The total number
of variables is 12N, consisting of 3N particle displacements, U;, 3N particle rotations, WI'

3N particle forces, ft, and 3N particle moments, mi' Thus the set of simultaneous equations
can be solved for a system with specified 6N known values of displacements, rotations,
forces, or moments to obtain the other 6N unknown variables. The force and moment at
each contact are in turn obtained from the local kinematics and local constitutive law.

3. MICROSTRUCTURAL CONTINUUM METHOD OF ANALYSIS

3.1. Continuum field for displacement and rotation
Let UI be the displacement of the center of a particle in a granular assembly. For a

small representative element consisting of sufficiently large number of particles, we express
the continuum displacement field by a polynomial function

UI = al +bljJ( + ;, CljkJ(Xk +...+higher order terms (ll)

where a;, b lj and Cljk are coefficients, and J(, X k , etc. are the position vectors measured from
the centroid of the volume V. The coefficient Cljk has the following property: Cljk = CI/cj' The
position vector J( can be measured with reference to a material frame either before or after
deformation, depending on whether Lagrangian or Eulerian description is used. Since we
deal with the small deformation problem, we shall not distinguish between Lagrangian and
Eulerian representations.

Similarly, the rotation of a micro-element (i.e. particle), WI' termed as micro-rotation,
is treated as an independent mode of deformation and represented by a continuum field
given by

WI = ~I+ flJljJ( +...+higher order terms (12)

where ~I and fIJI] are coefficients.
Since the displacement and rotation fields are defined for a small volume of element,

the higher order terms in eqns (11) and (12) may be neglected. In this work, in order to
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examine the effect of particle rotation, a quadratic form of Uj and a linear form of Wi are
considered.

To investigate the deformation characteristics of a particle assembly, the coefficients
of the polynomials in eqns (II) and (12) are evaluated by taking the mean values of the
field variables, Uj and Wi' and their derivatives for an element of particle assembly with
volume V.

The mean displacement is defined by the volume average of Uj, i.e.

Ui = ~ fUidV

= ~ f (OJ +bjj~+ ;, CijlC~Xk) dv.

Since

f Xkdv = 0 and ~ f ~Xkdv

is the moment of inertia ~ko we obtain

(13)

(14)

where 0i is approximately the mean displacement of the particles in the assembly if the
higher order term is small compared to the first term.

The mean displacement gradient, defined by volume average, is given by

(15)

Thus bi} is the mean displacement gradient which is also equal to the Ui,j at the centroid of
the element.

The mean of the second derivative of displacement takes the form

Ui,jk = Cijk'

Similarly, the mean micro-rotation defined by volume average is given by

Thus the coefficient ~i is the mean of particle rotations.
The mean micro-rotation gradient is given by

Wi,} = ~fWi.j dv = tPij'

(16)

(17)

(18)

Thus the coefficient tPi} is the mean micro-rotation gradient.
Assuming a quadratic function for Ui and a linear function for Wi' and using eqns (15),

(16), (17) and (18), eqns (11) and (12) are written as
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(19)

(20)

With the continuum representation, the deformation characteristics for this packing can be
described by the measures, iii.j, iii.jb and Wi,j'

3.2. Kinematics in continuum field and strain in an assembly
Using the particle displacement and rotation fields, the deformation of the stretch and

rotation springs between particles can be described with the coefficients of the polynomials.
Substituting eqn (20) into eqn (I), the angular rotation of the rotation spring con

nection between two particles becomes,

(21)

where II represents the fabric vector XJ - Xi-
Furthermore, we define XC as the position vector from the centroid of the assembly to

the contact point between particles "a" and "b" such that

rfC = X~' -Xf, and rfc = Xi -Xf.

Then, the stretch of the spring can be expressed as

where 8i is a displacement vector, given by

Using eqns (19) and (20), eqn (24) is expressed into a polynomial form,

where the coefficients 6ij and 6ijk take the following forms:

(22)

(23)

(24)

(25)

(26)

(27)

Substituting eqns (25-27) and (21) into eqn (23), the stretch of the springs at the contact
between two particles, due to translation and rotation of the particles, is thus expressed in
terms of the coefficients of polynomials by

(28)

where the fabric tensor JIk is introduced as XJxZ - XiXk• Note that the fabric tensor is
symmetric, that is, JIk = Jkj . In the expression of the local kinematics of particles, the
required geometric measures for the micro-structure are, Xi, Ii, and Jij •

It is noted that although Bij in eqn (26) has a form similar to that of the micro-strain
given by Eringen (1968) in the micropolar theory, it takes different meaning in the context
of particle assembly. In an assembly of particles, the symmetrical part of iij is equal to the
symmetrical part of the displacement gradient, i.e.
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representing the mean stretch of the assembly.
The skew symmetric part of eij in eqn (26) is given by
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(29)

(30)

where the skew symmetrical tensor u[ijl = 1j2(ui.j - Uj.i), representing the rigid body rotation
tensor. The angular rotation tPm corresponding to the rigid body rotation is

(31)

Using eqn (31), the skew symmetric part of eij in eqn (30) becomes

(32)

which represents the mean value of the net particle spin (i.e. the difference of the mean
particle rotation and the rigid body rotation of the assembly). Thus, we term the coefficient
ejj as the "mean micro-strain" of the assembly and the coefficient ejjk as the "mean micro
strain of the second order". Neglecting the higher order terms, the variables of strain
measures for this assembly can be selected to be ejj' eijk and Wj.j •

3.3. Stress in an assembly
The principle of virtual work is used here to obtain the relationship between the

external forces applied to the assembly and the internal forces between the particles of the
assembly. Due to a virtual movement of each particle, lJui and lJwi, the virtual work is
given by

lJ(WE + WI) = 0

= ~ lJUi(ff+~ If)+~ lJWi(mi+~ (mi< +eik/r;<In)' (33)

Using the polynomial expansions in eqns (11) and (12) for lJui and ()wi, and substituting
11< from eqn (31), eqn (33) yields

o= ~(lJai+lJbjjXj+lJCjjkX;Xk+"')(/i+~/f)

+~ (lJCXj+lJq,jjXj+" .)(mi+eik/X:f7 +~ (mj< +eik/XU7<»). (34)

This equation must hold for any variation of the polynomial coefficients, lJaj, M jj , lJc/jkt lJCXj,

lJq,jj, etc. For example, corresponding to the coefficients, lJah we obtain the force equilibrium
equation for the assembly

(35)
a a <

and correspondin~to the coefficients, lJCXj, we obtain the moment equilibrium equation for
the assembly
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(36)
a a C

Similarly, corresponding to the polynomial coefficients, ~bij' ~C;jk and 6cjJij, we obtain the
following set of equations:

(37)
a a

(38)
a a

"IXr(mj +ejkIXUi> = - "Ixr "I (mt +ejklXZCfiC).
a a

(39)

Each of the above equations shows the relationship between the external forces of the
assembly and the internal contact forces within the assembly. If more terms of the poly
nomial coefficients are selected, more equations of such relationships can be established.

In terms of continuum concept of stress, we relate the forces in eqns (37), (38), and
(39) to the quantities termed as (I) stretch stress, (2) first moment of stretch stress, and (3)
polar stress.

(I) Stretch stress. To differentiate from couple stress, we term the Cauchy stress (Jij as
the stretch stess in the granular assembly. In a representative element of granular assembly
with volume V, using the equilibrium condition

(40)

we define the mean field of stress by

(41)

Introducing divergence theorem, the volume integral in eqn (41) can be converted into a
surface integral as follows:

(42)

where S represents the boundary surface of the volume V, and nk is the normal vector
outward to the surface. For discrete forces fj on the boundary surface S, the surface
integral in eqn (42) can be expressed by a summation of the boundary forces, given by

- 1 ",xala(J/j:: VL. / j'
a

(43)

Equation (43) can also be written in terms of the internal contact forces with the aid
of eqn (37). On the right hand side of eqn (37), in the summation over all particles, each
contact is counted twice because each contact is associated with a pair of particles. For
example, the contact point c is associated with particles "a" and "b". Thus eqn (43) can be
written as a summation over all contacts
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(44)

Note that ft = - f'j = fj and the fabric vector n= X~ - Xr. Hence the mean stress of
the assembly is

(45)

This leads to the familiar results by Christoffersen et al. (1981) and Rosenberg and
Selvaudurai (1981) for the volume average of stress.

(2) First moment of stretch stress. Due to the non-vanishing second derivative of
displacement Ui.jk> the stress is no longer uniform in the assembly. To account for the stress
non-uniformity, we define a quantity ~jk as the mean of the first moment of stretch stress
in the granular assembly, similar to that used in the theory of stress mean (Truesdell and
Toupin, 1960). It is given by

(46)

where V is the volume of the assembly.
Applying divergence theorem and equilibrium equation (eqn (40» to eqn (46), the

volume integral can be expressed into a surface integral as follows

(47)

where nm is the normal vector outward to the surface. For discrete forcesn on the boundary
surface S, the surface integral can be expressed by a summation of the external forces
applied to the boundary surface of the assembly. It is given by

(48)

The mean of the first moment of stretch stress in eqn (48) can also be described by the
internal contact forces with the aid of eqn (38). Because each contact point is associated
with a pair of particles, the summation of eqn (38) can be written as a summation over all
contacts. Thus eqn (48) becomes

(49)

Note that n c = - ff =f~ and the fabric tensor Jij = X~X; - XrXj. Hence the mean of
the first moment of the stretch stress for the assembly is given by

(50)

where V is the volume of the assembly. Note that the fabric tensor is symmetric, i.e.
Jjk = J~j' Thus the first moment of the stretch stress tensor Tijk = 1jik'



446 c. S. CHANG and C. L. LlAO

(3) Polar stress. Since stress couples are expected to exist at particle contacts throughout
the assembly, the stress representation for such media should be chosen to include the
couple stress defined as that in the micropolar theory (Eringen, 1968).

From the balance law of angular momentum, the equilibrium conditions of couple
stress can be expressed as follows:

(51)

where the couple stress tensor mjj , defined in the micropolar theory for an infinitesimal
element of a continuum media, is the moment about the centroid of the infinitesimal
element, per unit area of the ith face in the jth direction (right hand rule is applied).

Since we are dealing with an assembly of finite volume, it is convenient, in our
derivation, to refer the moment about the centroid of the assembly. Let Xn be the position
vector measured fr'lm the centroid of the assembly to the centroid of the infinitesimal
element, we introduce a polar stress M jj as the moment stress per unit area about the
centroid of an assembly. The polar stress is thus a function of both couple and stretch
stresses

(52)

Using this definition of polar stress tensor M jj , the moment equilibrium equation can
be reduced to a simple form given by

M;j.j=O.

In a granular assembly, we define the mean polar stress by

- IfM j ·=- M··dv
1 V '1

(53)

(54)

where V is the volume of the assembly.
Applying divergence theorem to eqn (54) and using the moment equilibrium equation

(eqn (53», eqn (54) is expressed as a surface integral, given by

- 1 f 1 f
M jj = VJv (M/cjXj),Jc dv = VJs XjM/cjn/c dS

=~LXj(m/cj +ejmnXmUkn)nk dS. (55)

For discrete moments mj
Q on the boundary surface S, the mean polar stress can be expressed

as a summation of external forces and moments, given by

(56)

The mean polar stress in eqn (56) can also be described by the internal contact forces
and moments with the aid of eqn (39). The expression of the summation over all particles
in eqn (39) can be written as a summation over all contacts. Equation (56) becomes



Constitutive relation for a particulate medium

Mij = - ~L.({Xfmr+xrmt')+ejk/{XfX:cfrc+xrX%Cf7C»).
C
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(57)

Note that fOC = _fbc =fc mac = _mb" =m: xJac = XJ?C = XJ", and the fabric vector
J J l' J J J'

tr = xt - Xr. Equation 57 becomes

(58)

3.4. Constitutive relationship
A set ofconstitutive equations are proposed to relate the strain measures: Bij' B/jk> and

w/.j to the stress measures: a/j' T:jk> and Mij. The relationship between stress and strain can
be obtained based on the following relationships: (a) stresses versus contact forces and
moments (eqns (45), (50), (58». (b) contact forces and moments versus contact dis
placement and rotation (eqns (3). (5», and (c) strains versus contact displacement and
rotation (eqns (21), (28». Applying eqns (5), (28) into eqn (45), eqns (5), (28) into eqn
(50), and eqns (3), (5). (21), (28) into eqn (58), the set of constitutive equations can be
obtained:

(59)

(60)

(6l)

where the constitutive coefficients are expressed in terms of packing structure measures:
Ii, Jij and Xi, and the local constitutive constants: Kij and Gij, given by

(62)

(63)

(64)

(65)

(66)

(67)

The condition of non-negative energy is essential for the requirement of stability of
the material. This set of constitutive equations satisfy the requirement of non-negative
internal energy since the local constitutive law is selected such that the internal energy is
always positive for each contact. The non-negative energy ofthe system can also be observed
from the symmetrical properties of the following constitutive coefficient tensors :
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A ijkl = A 1kji : Eijpklm = Emlkp/i; and H,jkl = H 1k/ i .

These symmetrical properties can be shown clearly from the matrix form of the constitutive
equations. By defining a stress vector that consists of the following components,

and a strain vector that consists of the following components,

the constitutive equations (Le. eqns (59)-(61» can be written in a matrix form

{a} = rCHe}.

The constitutive matrix [Cl is symmetric.

(68)

4. EXAMPLE OF TWO DIMENSIONAL CIRCULAR PARTICLES

A random packing of equal sized circular disks is used here for the evaluation of the
proposed method. The structure of this packing is shown in Fig. 2 which is obtained by
digitizing a photograph of an assembly of aluminum rods randomly placed in a box of 7
in x 8.1 in. Radius of each rod is 0.25 in. Total number of particles is 276, total number of
contacts 695, and the average coordination number 5.03. The contact normal distribution
for this packing is shown in Fig. 3.

4.1. Discrete method
Constants for the springs between the disks in contact are assumed to be as follows:

kn = 1000 lb/in, ks = 100 lb/in, and Gz = 100 Ib/rad. Two loading conditions, as sche
matically shown in Fig. 4, are applied to simulate: (a) a symmetric shear stress (1x,. = (1,..<

and a normal stress (1.l~V' (b) a polar stress Mxz ' The packing is deformed through external
forces applied to the boundary particles of the assembly. Using eqns (45), (50) and (58),
the stresses corresponding to the two sets of applied forces are given in Table I. Since the
packing is not symmetrical about x and y axis, the applied forces on boundary particles

Fig. 2. A randomly packed assembly of circular disks in the example.
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Fig. 3. Contact normal distribution for the random packing.
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Fig. 4. Schematic plot for two loading conditions: (I) normal and shear stress, and (II) moment

stress.

Table I. Applied stress for the two loading conditions

Applied
stress

Loading condition

II

0'u(lb/in2
)

0'vAlb/in2
)

uxv (lb/in2
)

0',.;. (1b/in2
)

M:cz(lb--in/in2
)

M,z(lb--in/in~

Tux(lb--in/in2)
Txvx(lb--in/in~
Ty~.(lb--in/in ~
Tu,(lb--in/in2)
Tyxy(lb--in/in 2)
Tvyy(lb--in/in~

-0.064
1.087
1.081
1.638
0.1637
0.1639

-0.0003
-0.0468

0.0452
0.1169
0.2091
0.0330

-0.0055
0.2136
OOסס.0

OOסס.0

-11.3320
-1.9114

0.6976
11.3320

1.9114
OOסס.0

OOסס.0

OOסס.0

cause a small polar stress in the first loading case and small shear and normal stresses in
the second loading case.

Based on eqns (9) and (10), three equations can be set up for each particle, thus a
set of 828 simultaneous equations is formulated for the 276 particles. The computed
displacement and rotation for particles, relative to those of the particle located nearest to
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Fig. 5. Comparison of the particle displacement fields obtained from the discrete method and the
continuum method for loading case I. (A) Discrete method. (8) Continuum method.

(A)

the centroid of the assembly, are plotted with amplified scales in Figs 5, 6 and 7 and
compared with the results calculated from microstructural continuum method. The particle
displacement field for the first and second loading cases is shown in Figs 5 and 6,
respectively. The particle rotation field for the second loading case is shown in Fig. 7. The
particle rotations for the first loading case are negligibly small compared to that of the
second case, therefore are not shown in plot.

To represent the discrete variables by continuum fields, the computed u..." Uv and (J): for
the 276 particles are then used to fit polynomial functions by the least square method. For
this example, the polynomial forms are assumed as follows:

- - - '- - 2Ux = ax +Ux.tX+ U.t.yY+ U.t,xx X • +U.(,yxXY+ Ux,yyY (69)

(70)

(J): = co, +CO:,xX+ cO:..'y. (71)
The coefficients computed from the least square method are listed in Table 2 and com·

pared with the results obtained from the microstructural continuum method. The degree
of agreement between the discrete values and polynomial approximation is shown by the
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Fig. 6. Comparison of the particle displacement fields obtained from the discrete method and the
continuum method for loading case II. (A) Discrete method. (B) Continuum method.
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(A)

Table 2. Comparison of strains obtained from continuum and discrete methods for the two loading cases

Loading case I Loading case II

Strain Microstructural Microstructural
measures continuum Discrete continuum Discrete

iix.,% -4.25 -3.74 1.23 5.84
ii•.., +00: 13.43 15.64 8.78 4.20
".v.x-wz 12.46 14.90 -5.44 -0.99
Uy.)l 13.96 15.84 -0.36 -2.59
ii.....(ljin) -0.05 -0.05 0.78 1.58
ii.,X,(ljin) -0.08 -0.15 8.38 20.27
ii•.,,(ljin) -0.02 -0.16 3.16 6.00
ii,....(I/in) 0.26 0.16 -8.27 -9.71
ii,,X,(I/in) 0.23 I.l -4.10 -2.22
iiy•yy(ljin) 0.13 0.16 -2.32 -3.60
c.Q:...<rad./in) 0.34 0.93 -14.98 -18.52
c.Q:.y(rad./in) 0.15 0.59 -3.69 -6.85

• All numbers x 10- 4
•

goodness of fit, R, (R = I represents a perfect fit). The goodness of fit, listed in Table 3 for
this example, shows that the displacements and rotations can be reasonably approximated
by the assumed polynomial functions. The strain energy for stretch springs and for rotation
springs are also listed in Table 3. In the first loading case, the strain energy for stretch
springs is 99.55% of the total applied external work. Strain energy for rotation springs is
only 0.45%. In the second loading case, the strain energy for stretch springs is about 96%
of the total applied external work. Strain energy for rotation springs is 4%.

Table 3. Goodness of fit for the computed particle dis
placement and rotation and the work done in this system

Loading condition
Goodness

of fit II

u. 0.9950 0.9984
uy 0.9855 0.9995
00: 0.6188 0.8887

Work done (Ib-in) I II

By stretch springs 0.3525 1.204
By rotation springs 0.0018 0.046
Total 0.3543 1.250
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4.2. Microstructural continuum method
The microstructural continuum method is applied to solve the same problem by

assuming that the variables U.t , u" and W: have the same polynomial forms as that in eqns
(69), (70) and (71). Following eqns (62)-(67), using constants k. = 1000 Ib/in, ks = 100
Ibjin, and G: = 100 Ibjrad, the constitutive matrix in eqn (68) is obtained. Thus deformation
behavior of the packing can be described by the small system of eqn (68), instead of a large
system of 828 simultaneous equations as in the discrete method.

The applied stress {a} in eqn (68) is already given in Table I, which is computed from
the applied forces using eqns (43), (48) and (56). The {t} in eqn (68) is thus computed.
Then, using eqns (26) and (27), values of Ui.j and Ui.jk are obtained. The values of B.t... t VY '

tt,v> ty... cO:.... cO:.,v> u x•t... u x •ty , u x . yy , u y..u , uy.xY' u y•yy are listed and compared with that obtained
from discrete method in Table 2. From the comparison, the results obtained from the
microstructural continuum method show reasonable agreement with that from the discrete
method.

Using the values in Table 2, the particle rotations. Wi, and the particle displacements,
ui , are computed from eqns (19) and (20) for comparison with that obtained from the
discrete method. For the first loading case, comparisons of the displacement fields in Fig.
5 show good agreement between the discrete and microstructural continuum methods. For
the second loading case, Fig. 6 shows local vortices in the displacement field obtained
from the discrete method. This pattern is not exhibited in the results obtained from the
microstructural continuum method. Similarly, the local variations, observed in the particle
rotation field from discrete method, are not shown in the results from the microstructural
continuum method. However, the general trends of the rotation field and displacement field
are reasonably in good agreement between the two methods. Higher order terms of stress
and strain should be considered if the local variations are of interest in the analysis.

S. SUMMARY AND CONCLUSION

A set of constitutive relationships is presented for granular medium. The discrete
variables (i.e. displacements and rotations of particles) are assumed to be continuum
polynomial functions so that the discrete system can be treated as a continuum system to
derive the stress-strain relationship for the medium. The strain measures for the packing
account for both the particle displacement and the particle rotation. Based on the principle
of virtual work, the stress measures for the packing are expressed in terms ofcontact forces
and contact moments.

The derived stress-strain relationship is illustrated by an example of a randomly packed
particles loaded in two different conditions. The results for this example are obtained from
the microstructural continuum method assuming a quadratic polynomial for the particle
displacements and a linear polynomial for the particle rotations. The calculated particle
displacements and particle rotations show reasonable agreement with that obtained from
the discrete method.

The microstructural continuum method is a practical way to solve problems involving
enormously large number ofparticles. The total number ofequations describing the consti
tutive relationship of a granular assembly is determined by the number of terms selected in
the polynomials. For simplicity, it is desired to use smaller system ofconstitutive equations.
The smallest system of a set of constitutive equations, obtained by selecting a linear
polynomial for particle displacements and a constant for particle rotations, has the same
form as that given by Chang (1987). When the mode of rotation is completely neglected in
the smallest system, the constitutive relations can be further reduced to a form similar to
that given by Walton (1987), Jenkins (1987) and Bathurst and Rothenburg (1988).

However, the smaller set of equations results in an approximate set of solutions for
particle displacements and rotations. Consequently, each individual particle is not necess
arily in force and moment equilibrium. Accuracy of the solutions depends on the approxi
mation involved in the polynomial representation for particle displacements and particle
rotations. The present approach provides a flexible method so that one can select the
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number of terms of polynomial functions to obtain a desired balance between the amount
of computing effort and the accuracy of solution.

The proposed constitutive model is useful, when corporated in a finite element method,
for the analysis of boundary value problems involving complicated boundary conditions
for a granular media which are often encountered in practical situations.
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